Classification of capped tubular viral particles in the family of Papovaviridae
نویسندگان
چکیده
A vital constituent of a virus is its protein shell, called the viral capsid, that encapsulates and hence provides protection for the viral genome. Viral capsids are usually spherical, and for a significant number of viruses exhibit overall icosahedral symmetry. The corresponding surface lattices, that encode the locations of the capsid proteins and intersubunit bonds, can be modelled by Viral Tiling Theory. It has been shown in vitro that under a variation of the experimental boundary conditions, such as the pH value and salt concentration, tubular particles may appear instead of, or in addition to, spherical ones. In order to develop models that describe the simultaneous assembly of both spherical and tubular variants, and hence study the possibility of triggering tubular malformations as a means of interference with the replication mechanism, Viral Tiling Theory has to be extended to include tubular lattices with end caps. This is done here for the case of Papovaviridae, which play a distinguished role from the viral structural point of view as they correspond to all pentamer lattices, i.e. lattices formed from clusters of five protein subunits throughout. These results pave the way for a generalisation of recently developed assembly models.
منابع مشابه
A new series of polyhedra as blueprints for viral capsids in the family of Papovaviridae
In a seminal paper Caspar and Klug established a theory that provides a family of polyhedra as blueprints for the structural organisation of viral capsids. In particular, they encode the locations of the proteins in the shells that encapsulate, and hence provide protection for, the viral genome. Despite of its huge success and numerous applications in virology experimental results have provided...
متن کاملAssembly Models for Papovaviridae based on Tiling Theory
A vital constituent of a virus is its protein shell, called the viral capsid, that encapsulates and hence provides protection for the viral genome. Assembly models are developed for viral capsids built from protein building blocks that can assume different local bonding structures in the capsid. This situation occurs, for example, for viruses in the family of Papovaviridae, which are linked to ...
متن کاملStructure and self-assembly of viruses
In a landmark paper Sir Aaron Klug and Don Caspar have established a theory that predicts the surface structures of viruses in terms of a family of polyhedra [1]. It is fundamental in virology and has a broad spectrum of applications, ranging from image analysis of experimental data to the construction of models for the self-assembly of viral capsids (i.e. of the protein shells encapsulating, a...
متن کاملAn equilibrium assembly model applied to Murine Polyomavirus
In Keef et al., Assembly Models for Papovaviridae based on Tiling Theory (submitted to J. Phys. Biol.), 2005 [1] we extended an equilibrium assembly model to the ðpseudo ÞT 1⁄4 7 viral capsids in the family of Papovaviridae providing assembly pathways for the most likely or primary intermediates and computing their concentrations. Here this model is applied to Murine Polyomavirus based on the a...
متن کاملCap analog and Potato virus A HC-Pro silencing suppressor improve GFP transient expression using an infectious virus vector in Nicotiana benthamiana
Transient expression of proteins in plants has become a choice to facilitate recombinant protein production with its fast and easy application. On the other hand, host defensive mechanisms have been reported to reduce the efficiency of transient expression in plants. Hence, this study was designed to evaluate the effect of cap analog and Potato virus A helper component proteinase (PVA HC-Pro) o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005